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SUMMARY 
An upwind finite element technique that uses cell-centred quantities and implicit and/or explicit time 
marching has been developed for computing hypersonic laminar viscous flows using adaptive triangular 
grids. The approach is an extension to unstructured grids of the LAURA algorithm due to Gnoffo. A 
structured grid of quadrilaterals is laid out near a solid surface. For inviscid flows the method is stable at 
Courant numbers of over 100000. A first-order basic scheme and a higher-order flux-corrected transport 
(FCT) scheme have been implemented. This technique has been applied to the problem of predicting type 111 
and IV shock wave interactions on a cylinder, with a view to simulating the pressure and heating rate 
augmentation caused by an impinging shock on the leading edge of a cowl lip of an engine inlet. The 
predictions of wall pressure and heating rates compare very well with experimental data. The flow features 
are distinctly captured with a sequence of adaptively generated grids. 
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INTRODUCTION 

Current efforts in the development of hypersonic aircraft have focused a great deal of attention on 
the design of engine inlets. The forebody of such vehicles is designed to compress the flow through 
a series of ramps. Shocks emanating from such ramps influence the air flow through the engines 
and must be accounted for in the analysis because they may produce severe and highly localized 
heating. Unless specifically designed for such hot-spots, the integrity of the entire vehicle can be 
jeopardized. Engine designers prefer to  coalesce such shock systems on the inlet cowl leading edge 
to maximize engine performance. Edney' has defined a set of six types of shock interference 
patterns when the bow shock over a cylindrical leading edge is impinged upon by an upstream 
oblique shock. A type IV interaction produces the most severe heating and is therefore a topic of 
current research at NASA Langley Research Center. 

Experimental studies to date on these phenomena have focused primarily on planar shocks 
intersecting shock systems generated by three-dimensional bodies or cylinders oriented transverse 
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to the oblique shock (i.e. representative of a wing or tail).'-4 This has left a void for the designer of 
two-dimensional engine inlets which would have planar shocks from the inlet compression 
surfaces intersecting a cylindrical leading edge oriented with its axis parallel to the plane of the 
shock. In 1971 Craig and Ostwerth' experimentally measured pressures and heat transfer rates on 
a cylindrical leading edge typical of a hypersonic inlet cowl. However, large instrumentation 
spacing resulted in poor resolution of the peak pressure and heat transfer rates. Recent tests6.' 
performed at the Langely 8-foot High Temperature Tunnel and the Calspan 48-inch Hypersonic 
Shock Tunnel have produced a set of new experimental data. 

Several investigators have attemped analytical solutions of the shock flow field. Edney' and 
Morris and Keyes' used oblique shock and Prandtl-Meyer expansion relationships to predict the 
interference pattern and peak pressure and heat transfer rate with good success. However, their 
methods rely on experimental measurements of the shock stand-off distance and transmitted 
shock length. Tannehill and Holst' applied a 2D Navier-Stokes finite difference analysis in a 
simulation of Edney's spherical leading edge results with some success. However, the formulation 
did not adequately capture the shocks at the high Reynolds numbers of the tests. More recently, 
White and Rhie" used a pressure-based implicit finite volume method, while Klopfer and Yee" 
used a finite volume, total variation diminishing (TVD) scheme to investigate this phenomenon. 
Their approaches, however, used structured meshes, which require that the spatial discretization 
be performed in a 'regular' manner, i.e. that each nodal point have the same number of elements 
around it. 

To compute hypersonic flows around arbitrary shapes with complex localized flow phenomena, 
unstructured grid methods for the Euler equations have been receiving attention recently (e.g. 
Taylor-Galerkin and Runge-Kutta  scheme^'^-'^). Work is in progress to extend these ap- 
proaches to the solution of the Navier-Stokes equations.16 

Upwind techniques have not been widely employed on unstructured grids to date; a notable 
exception is the work of Stoufflet et a1.I7 which uses a vertex scheme and van Leer limiting. In this 
paper we investigate the implementation of an upwind method in the context of unstructured grids 
using a cell-centred scheme and flux difference splitting based on the use of Roe's averaging." The 
work is an unstructured grid implementation of the approach employed in the program LAURA 
by G n o f f ~ . ~ ~ ~ ~ ~  The adaptive mesh generator'232' and this upwind Navier-Stokes solver are 
combined in a set of programs called LARCNESS, an acronym for Langley adaptive remeshing 
- code and _Naviel-stokes Solver. 

In the next section the development of the inviscid and viscous algorithms is outlined along with 
the flux-corrected transport (FCT) extension. The main focus-the validation of the analysis by 
comparison with experimental data and quantitative predictions of shock wave and bow shock 
interaction on a blunt cylindrical leading edge-is covered in the section on results. A detailed 
description of the adaptively regenerated meshes is given for a sample case, while results for several 
incoming shock wave locations .are summarized. 

SOLUTION ALGORITHM 

The solution algorithm employed in this paper is an unstructured grid implementation of a 
scheme recently presented by G n o f f ~ . ' ~ ~ ~ ~  The compressible Navier-Stokes equations are written 
in the conservation form 

dU dF' dGi -+-==, 
at dxi axi 
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where U is the vector of unknowns and F' and G' denote the inviscid and viscous fluxes 
respectively in the direction x i  of a Cartesian co-ordinate system  OX,^,. The solution domain SZ is 
represented by an assembly of triangular and quadrilateral elements. Over a single element SZ, the 
integral form of (1) is then 

where n=(n, ,  nz)  denotes the unit outward normal to the boundary re of 0,. Associating 
unknowns U, with each element, this equation may be approximated in the form 

At 
AU, = U:" -U: = - (IC +VC), (3) Re 

where UF denotes the value of U, at time t = t,, At = t,+ - t ,  and IC and VC denote the inviscid 
and viscous contributions respectively to the right-hand side of (2). 

Inviscid contributions 

The evaluation of the inviscid contributions follows closely the approach described by 
G n ~ f f o ' ~ ~ ~ ~  and full details may be found in his papers. A brief summary is presented here for 
completeness. The inviscid contributions IC are given by 

[re k. 
and are evaluated by summing the contributions from each individual element side re, in turn. In 
this evaluation the normal flux F, is replaced by a numerical flux F,, so that 

I C = -  n,F'dT=- FndT (4) 

For a typical side re, with associated elements e and r, Roe's linearization" is used to construct 
the matrix A, such that 

F n r  - F n e  = As W r  -Ue) (6 1 
and the numerical flux is then taken to be - 

F n  = f CFne + F n r  - I As I (Ur - Ue)l. (7) 

Here it has been assumed that A, has been factored as 

A, = R- AR, (8) 

(9) 

The minimum allowable value for Izi  is restricted according to the method proposed by 

where A is a diagonal matrix containing the eigenvalues Izi  of A, and (A,( is defined by 

1 A,( = R- 1 A 1 R. 

Harten" and is such that 

where is 
0.3. Full details of the entries in the matrices R and R-' can be found in the papers by G n o f f ~ . ~ ~ . ~ ~  

is the eigenvalue limiter. For the results presented in this paper the typical value of 
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We chose to include a structured mesh of several layers of quadrilaterals in the boundary layer 
region so that we could switch off the value of at cell walls parallel to the cylinder to minimize its 
influence on computed gradients as suggested by Gnoffo." If these inviscid contributions are 
evaluated at time t ,+ equations (3) leads to the implicit time-stepping scheme 

where 6, is the length of the side reS. 
Linearization of this equation for numerical solution gives 

(12) 
At 

I +- C !A: 16, AU,= -__ C [F:'+ F,*,- IAf I(U,* -Uy)]S,. 

Here the linearization has been performed with iterative solution in mind and the superscript* 
means that the term is evaluated using the latest available solution in the adjacent element. Thus 
the iterative procedure may be regarded as a point GaussSeidel method requiring the inversion of 
a 4 x 4 matrix for each element in the computational grid. However, with an unstructured grid it is 
not easy to specify a prescribed direction of sweep through the grid, and the computations 
reported in this paper have been performed by sweeping through the elements in numbered order 
in one step and reversing the direction of sweep for the next step. For the unstructured meshes used 
herein this sweeping is therefore quite random. In this form the algorithm is stable for large values 
of the Courant number. 

the authors have addressed the problem of the computation of inviscid 
shock interaction on cylindrical leading edges. In this paper we consider an interaction at a Mach 
number of 8.03 using the problem definition given in Table I and the computational domain 
shown in Figure 1. The adaptively regenerated mesh employed 4911 nodes and 9610 triangles as 
shown in Figure 2. An enlargement of the mesh in the interaction region is also shown. The 
computed pressure, Mach number and temperature contours are given in Figure 3 to show the 
global flow phenomena. Enlargements show the flow physics in the region of the interaction and 
the ability of the technique to resolve these features. The computed and experimentally 
observed6* pressure distributions over the cylinder surface are in excellent agreement, as shown 
in Figure 4. 

( Ee s ) 2Q, s 

In recent 

FCT extension 

Higher-order accurate evaluations of the numerical flux are not straightforward on un- 
structured grids, though some successes have been Here Zale~ak 's*~ generalization 
of the 1D flux-corrected transport (FCT) schemes of Boris and BookZ5 is employed with the basic 
implicit scheme of equation (12). The objective is to limit the diffusion term in (11) so that a AU, of 

Table I. Description of conditions for viscous shock interaction at M = 8.03 

Region A Region B 
Reynolds number (inch-') 39774 Mach number 8.03 5.25 
Wall temperature ( O R )  530 Density (slug ft-3) 

1716 Velocity (ft s-')  5571.7 5326.9 
1.4 Flow direction (deg) 0 12.5 Gamma 

Shock angle (deg) 18.1 114 Temperature ("R) 200.8 428.4 
Prandtl number 0.72 

5.97E-5 1.99E-4 
Gas constant (ft' s-' OR-' 1 
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Figure I .  Computational domain for inviscid shock interaction at M = 8.03. 

1911 nodes 
0 quads 

Figure 2. Finite element grid for inviscid shock interaction at M = 8.03 

Pressure 

section 

(a) 

Figure ya). Pressure contours for inviscid shock interaction at M=8.03 

as high an order as possible is produced without introducing overshoots. To ensure conservation, 
the limiting is performed over the sides and side limiters 8, are determined. The resulting solution 
is computed according to 
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Figure 3(b). Mach number contours for invi.scid shock interaction at M = 8.03 

temperature 

Figure 3(c). Temperature contours for inviscid shock interaction at M = 8.03 
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Figure 4. Surface 
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pressure distribution for inviscid shock interaction at M = 8.03 

Viscous contributions 

The evaluation of the viscous contributions to the right-hand side of (2) requires a knowledge of 
the first derivatives of quantities such as the velocity components ui and the temperature T. The 
necessary first derivatives have been obtained by a variational recovery process in which the 
derivatives are represented in a piecewise linear manner over the computational domain; e.g. for 
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the temperature T we can write 

where PE is the piecewise constant shape function associated with element E and N, is the 
piecewise linear or bilinear shape function associated with node I ,26 with the nodes placed at the 
vertices of the elements. The nodal values of the derivatives are obtained from the integral 
statement 1 R g N K d Q =  axi lrniTNKdT- 

by inserting the approximations (14). The result is that 

where the summation appearing in this expression extends only over those elements E which are 
associated with node K ,  and M, denotes the standard lumped mass matrix. For a general mesh it 
is thus possible to write 

where TxlK and TXZK denote the boundary terms and 

Now consider the linearization of the viscous terms for element e.  In particular, consider the 
contribution from a side s which has associated nodes A4 and N. Then 

and an evaluation at time t = t,+ can be obtained in the form 
* -1 a T  = c( -bseATe, 

ax1 s 8x1 s 

Similarly 
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The corresponding expressions for the gradients of the velocity components may now be written 
directly. The inclusion of the viscous contributions changes (12) to read 

where C,*, denotes the viscous contribution obtained using the latest available values. The entries 
Bij in the matrix Bs can be obtained by inserting expressions such as (20) and (23) into the viscous 
fluxes and expressing the increments Aui and AT in terms of the increments in the conserved 
variables. The result is that 

B, 1 = B12 = B13 = B,, =0, 

B22= -4lslP:? B 2 3 =  - 4 2 s / P r ,  B24=0, 

BZI =(41sUYe++2sUTe)lPZ.'r 

where 

and 

a = ps/Re. 

In these expressions Re and Pr denote the Reynolds and Prandtl numbers respectively. 
The complexity of the evaluation of the viscous contribution G,*, in (25) is such that in the 

current implementation it has been replaced by Grs. Thus the iterative solution algorithm is 
effectively point Gauss-Seidel for the inviscid contributions and point Jacobi for the viscous 
contributions. This probably has the effect of lowering the maximum Courant number that can be 
used. Compared to inviscid flows where very large Courant numbers can be run, the maximum 
permissible Courant number for viscous analyses is about 5-10 on highly stretched meshes. 

SHOCK INTERACTION RESULTS 

Recently, tests were performed in the Calspan 48-inch Hypersonic Shock Tunnel (48" 
HST) to study the interaction of an impinging shock with a bow shock on a cylinder.6-8 This 
tunnel is started by rupturing a double diaphragm which permits high-pressure gas in the driver 
section to expand into the driven section, and in so doing generates a normal shock which 
propagates through the low-pressure air. A region of high-temperature, high-pressure air is 
produced between this normal shock front and the gas interface between the driver and driven gas, 
often referred to as the contact surface. When the primary or incident shock strikes the end of the 
driven section it is reflected, leaving a region of almost stationary high-pressure heated air. This air 
is then expanded through a contoured nozzle to the test section. The typical test time is about 
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10 ms. The tests were run at Mach numbers of 6-3 and 8.0, total temperatures ranging from 2100 to 
3040”R and freestream unit Reynolds numbers of 0 7  x lo6 to 4.9 x lo6 per foot. 

Continued evaluation of these data after initial publications6. has shown the interaction to be 
unsteady and the gauge temperatures to be significantly higher than the temperature of the 
stainless steel model. The data reduction technique developed by Rae and Tauber used in the 
reduction of the test results in the Langley 8-foot High Temperature Tunnel6 has been employed 
in the reduction of the Calspan 48” HST data. This technique, based on a closed form solution for 
a semi-infinite slab with temperature-dependent properties,” treats the heat flux as a series of step 
impulses rather than a constant and hence better accounts for the time transient heat flux caused 
by the motion of the shock interference pattern. Implementation has shown the Mach 8 data to be 
significantly higher than previously reported. The data herein are compared with the latest 
unpublished data (obtained from Allan R. Wieting and Michael S. Holden) which are uncorrected 
for wall temperature. The experimental value of stagnation heating rate for the undisturbed 
cylinder at M = 8-03 (run 21) was 61-7 Btu/ftz s. A three-dimensional viscous shock layer (VSL)’* 
analysis (corrected for 2D by a factor 0.74312) of this run with a perfect gas analysis for laminar 
flow conditions predicted a rate of 41-43 Btu/ft2 s. A 2D Fay and Riddell solution predicted 
45.52 Btu/ftz s which compares well with VSL. The differences between the experimental and 
analytical values have not been resolved, but could result from high-temperature effects not 
accounted for or high free stream turbulence levels. This difference has been factored out of our 
results by normalizing the experimental heating rates by the experimental undisturbed stagnation 
value (61.7), while our predictions have been normalized by the viscous shock layer value (41.43). 

Computationally, in order to simulate shock impingment onto the cowl lip of an engine inlet, a 
spectrum of cases with different shock locations was computed. The computational domain was a 
rectangular region enveloping the cylinder as shown in Figure 5. Inflow conditions in the free 
stream region (denoted as region A and B) are given in Table I. Experimentally, the impinging 
shock was generated by an upstream wedge which deflected the flow in region B upward by 12.5”. 
The conditions behind this impinging shock are also given in Table I. The vertical location K,, (see 
Table I1 for the notation of these cases) of the intersection of the impinging shock with the 
computational domain was varied to generate eight different cases (Sl-S8) which generated type 
111 and IV interference patterns. In order to best capture the location of the peak in the 
experimental heating rate, another shock location (denoted as case SO) was selected based on a 
linear interpolation of the locations of the peaks in computed heating rates in cases S1-S8 and the 
location of the peak heating rate in the experiment. 

A typical computation is described for the three meshes used to obtain solutions for flow 
corresponding to case SO. For all three meshes an unstructured grid consisting only of triangles 
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M = *,03 I ,Jr- Computational 

domain 

(-3.5, Ysh) 

Impinging 
shock 

Region A 

M = 5.25 All dimensions 
in inches Region B 

(-3.5, -5) 

Figure 5. Computational domain for viscous shock interaction at M = 8.03 
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Table 11. Shock locations for viscous shock 
interaction at M = 8.03 

CASE 
ystl 

(inch) 

s1 
s2 
s 3  
so 
s4  
s5 
S6 
s7 
S8 

-0.2635353 
-0.3635353 
-0'4635353 
-05226670 
- 0.5635353 
-0.6635353 
-0'7635353 
-08635353 
-0.9635353 

Finite element mesh 

3719 nodes 
1472 quads 
4176 triangles 

Temperature contours 

Figure 6(a). Finite element mesh 1 

3000 r 

Figure 6(b). Temperature contours 

I I I 
0 250 500 750 1000 

Iteration 

Figure 6(c). Maximum surface heating rate versus iteration 

was generated in the entire computational domain except in the vicinity of the cylinder. In this 
region 32 layers of stretched structured quadrilaterals were generated with the circumferential 
distribution dictated by the unstructured mesh. The thickness of the first layer was 1 x inch 
and an expansion ratio of 1.24 was used for the subsequent layers. Unless otherwise mentioned the 
runs were made with a Courant number of 3. 



POINT IMPLICIT UNSTRUCTURED GRID SOLVER 415 

Log 
density 
residual 

P/Po 

LARCNESS - 

-2 - 
0 250 500 750 1000 

Iteration 

Figure 6(d). Density residual versus iteration 
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Figure 6(e). Surface pressure distribution 
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Figure 6(f). Surface heating rate distribution 

An initial almost uniform mesh (mesh 1) consisted of 4176 triangular elements in the 
unstructured region and an additional 1472 quadrilaterals along the cylinder. The mesh and 
temperature contours for this computation are shown in Figures 6(a) and 6(b) respectively along 
with an enlarged section of the same. This coarse grid was adequate to get the essential features of 
the problem. The Courant number was increased from 0.3 to 3.0 in 200 iterations and then held 
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5822 nodes 
3424 quads 
4520 triangles 

Finite element mesh 

Figure 7(a). Finite element mesh 2 

Temperature contours 

Figure 7(b). Temperature contours 
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Figure 7(c). Maximum surface heating rate versus iteration 
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Figure 7(d). Density residual versus iteration 

constant at 3.0. For this mesh loo0 iterations were performed using the basic or non-FCT scheme. 
The maximum value of heat transfer rate on the cylinder as a function of iteration number is 
shown in Figure 6(c). Due to the coarseness of the mesh the location of the maximum value of 
heating rate oscillated after about 500 iterations. This is also evident in the residual behaviour 
(Figure 6(d)). The wall distributions of the pressure and heating rate normalized by the 
undisturbed values are compared with experiment in Figures qe) and 6(f) respectively. These 
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Figure 7(e). Surface pressure distribution 
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Figure 7(f). Surface heating rate distribution 

8809 nodes 
5792 quads 
5674 triangles 

Finite element mesh Temperature contours 

Figure 8(a). Finite element mesh 3 Figure 8(b). Temperature contours 

surface results show the augmentation above the undisturbed values at the interaction point on 
the surface. 

From the solution on this initial mesh, and using a combination of the gradients of density and 
Mach number as error indicators for the remeshing, a second mesh was generated. This mesh 
consisted of 4520 triangles and 3424 quadrilaterals in the structured region. A total of 2000 
iterations were performed on this intermediate mesh. See Figures 7(a) and 7(b) for the mesh and 
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Figure 8(c). Maximum surface heating rate versus iteration 
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Figure 8(d). Density residual versus iteration 
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Figure 8(e). Surface pressure distribution 

temperature contours. The maximum heating rate converged after about 1500 iterations as shown 
in Figure 7(c), while the density residual decreased by two orders of magnitude (Figure 7(d)). 
The heating rate and pressure distributions were below the experimental values (Figures 7(e) 
and 7(f)), but have shifted in circumferential position and sharpened. 

A third mesh was generated in a similar fashion. This mesh consisted of 5674 triangles and 5792 
quadrilaterals (Figure 8(a) and 8(b)). The temperature contours show most of the significant flow 
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Figure 8(f). Surface heating rate distribution 

features for this type IV interaction and are clearly showing more details of the flow phenomena. 
However, since this solution was obtained with the basic scheme, some smearing is evident. The 
maximum value of heating rate on the cylinder for values of the eigenvalue limiter (see Equation 
(10)) = 0.5 and 0.3 is shown in Figure 8(c). The lower value of 0 3  gave a heating rate which was 
slightly higher, as expected due to lower dissipation. The solution from = 0.5 was restarted after 
1500 iterations using the FCT scheme. After about 1000 iterations convergence was achieved. The 
residual behaviour for this case is shown in Figure 8(d). G n o f f 0 ~ ~ 3 ~ ~  mentions that it is necessary 
to close out a computation for his higher-order scheme by reducing the Courant number to 0.3 for 
a few hundred iterations in order to bring down the residual. In our computations the Courant 
number was gradually lowered from 3 to 1. As in Gnoffo's scheme for this FCT approach, 
convergence was degraded, while the basic scheme was seen to converge. For these reasons 
convergence in the FCT scheme was based on convergence of the value of the maximum heating 
rate. The wall distributions of the pressure and heating rates compare quite well with experiment 
(Figures 8(e) and 8(f)). The experimental heating rate was higher than computed in the region 
8= -50" to -3O", possibly due to turbulence. Figure 9 shows the contours of several flow 
quantities obtained with FCT. 

Figure 10 compares the temperature contours obtained with FCT with the basic scheme for the 
eight shock locations computed (cases Sl-S8). Significantly sharper features of the flow are 
captured. The sensitivity of the flow to slight variations in the inflow shock location is evident in 
this series of solutions. In each successive case the impinging shock is moved down by 0.1 inch. The 
first several cases are clearly a type IV interaction, while the last few are of type 111. Table I11 shows 
the effect of FCT on the peak values and locations of pressure and heating rates compared to the 
basic scheme with the eigenvalue limiter = 0.5. Earlier predictions showed an amplification of 
about 8 and 9.5 in the pressure and heating rates compared to the undisturbed case.6 However, 
our FCT solutions indicate that these values are higher, about 9.53 and 14.23 respectively. Note 
that the peak occurs at 8= - 19.00" for the experiment and 8 = - 19.08" for the analysis. As stated 
earlier, improved data reduction techniques indicate that the peak heat transfer amplification is 
14.28 at  a wall temperature of 1023 O R .  The previously reported peak was 9.52.16 Adjusting this 
value for a wall temperature of 530"R by ratioing the driving enthalpy differences across the 
stagnation point thermal layer would increase this value to 18.26. It should be pointed out that our 
analysis assumes a perfect gas and laminar flow conditions, while the test might have significant 
real gas effects and turbulence. Inspite of these differences, we feel that the current laminar version 
of the LARCNESS program does a remarkably good job of predicting the flow phenomena and 
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l 
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Enlarged 
section 

Figure 9(a). Density contours for viscous shock interaction at M=8.03 (case SO, mesh 3, FCT scheme) 

Figure 9(b). Pressure contours for viscous shock interaction at M =  8.03 (case SO, Mesh 3, FCT scheme) 

Figure 9(c). Mach number contours for viscous shock interaction at M =  8.03 (case SO, mesh 3, FCT scheme) 

Figure 9(d). Temperature contours for viscous shock interaction at M=8.03  (case SO, mesh 3, FCT scheme) 
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Figure 9(e). ff-velocity contours for viscous shock interaction at M =8-03 (case SO, mesh 3, FCT scheme) 

Figure 9(f). V-velocity contours for viscous shock interaction at M = 8.03 (case SO, mesh 3, FCT scheme) 

Figure lqa). Comparison of temperature contours for basic and FCT schemes for viscous shock interaction at M = 8.03 
(case S1, mesh 3) 

Figure lqh). Comparison of temperature contours for basic and FCT schemes for viscous shock interaction at M = 8.03 
(case S2, mesh 3) 
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Figure lac). Comparison of temperature contours for basic and FCT schemes for viscous shock interaction at M = 8.03 
(case S3, mesh 3) 

Figure lqd). Comparison of temperature contours for basic and FCT schemes for viscous shock interaction at M=8.03 
(case S4, mesh 3) 

Figure Iqe). Comparison of temperature contours for basic and FCT schemes for viscous shock interaction at M=8.03  
(case S5,  mesh 3) 

wall pressures and heating rates. For the basic and FCT schemes the peak values of pressure and 
heat transfer rate versus the circumferential location of the cylinder for all cases S1-S8 and SO are 
shown in Figures 11 and 12 to illustrate the sensitivity of peak locations of pressure and heating 
rates respectively to the shock impingement location and the effect of using the FCT scheme rather 
than the basic scheme. 

CONCLUSIONS 

An upwind finite element technique that uses cell centred quantities and implicit and/or explicit 
time marching has been developed for computing hypersonic laminar viscous flows using 
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Figure Iqf). Comparison of temperature contours for basic and FCT schemes for viscous shock interaction at M =8.03 
(case S6, mesh 3) 

I f i  

Figure 10(g). Comparison of temperature contours for basic and FCT schemes for viscous shock interaction at M =8.03 
(case S7, mesh 3) 

Figure lqh).  Comparison of temperature contours for basic and FCT schemes for viscous shock interaction at M = 8.03 
(case S8, mesh 3) 

unstructured triangular grids. A structured grid of quadrilaterals is laid out near a solid surface. 
For inviscid flows the method is stable at Courant numbers of over 100000. For viscous flows on 
highly stretched meshes the method is stable for Courant numbers of around 5-10. A first-order 
basic scheme and a flux-corrected transport (FCT) scheme have been implemented. This 
technique has been applied to the problem of predicting type 111 and IV shockwave interactions 
on a cylinder, with a view to simulating the pressure and heating rate augmentation caused by an 
impinging shock on the leading edge of a cowl lip of an engine inlet. The predictions of wall 
pressure and heating rates compare very well with other computational schemes (e.g. viscous 
shock layer and Fay and Riddell) and experimental data. The flow features are distinctly captured 
with a sequence of adaptively generated grids. 
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Table 111. Peak amplifications and locations for basic and FCT 
schemes for viscous shock interaction at M = 8.03 

PIP0 0 Q/Qo 0 
(deg) (deg) 

Case Basic FCT FCT Basic FCT FCT 

s 1  
s2  
s 3  
so 
s 4  
s 5  
S6 
s7  
S8 

5-04 543 
5.57 627 
6.57 8.56 
7.31 9.33 
7.40 9.53 
6.75 8.73 
5.53 7.49 
4.02 4.70 
2.98 3.03 

- 5.53 
- 10.32 
- 15.05 
- 19.08 
- 22.62 
-34.15 
- 37'02 
- 47.47 
-50.51 

5-00 6.20 
5.76 8.20 
7.02 12.73 
7.96 13.09 
8.17 14.23 
7.58 12.52 
5.31 11.41 
3.33 5.47 
2.18 2.74 

- 5.53 
- 10.32 
- 15.05 
- 19.08 
-21.73 
-34.15 
- 37.02 
- 48.47 
- 52.49 

0 Basic, €A. 0.5 

0 FCT 

I I I i 

o.20 -45 0 45 90 
0, deg 

Figure 11. Surface pressure amplification for basic and FCT schemes for viscous shock interaction at M =8.03 (case 
Sl-S8, mesh 3) 

0 Basic, €. = 0.5 

0 FCT 
h 

0 3  
-90 -45 0 45 90 

8, deg 

Figure 12. Surface heating rate amplification for basic and FCT schemes for viscous shock interaction at M = 8.03 (case 
Sl-S8, mesh 3) 

Our first experiences with this method appear quite promising. However, a wider class of flow 
problems needs to be computed in order to assess fully its adequacy for solving viscous hypersonic 
flows. Work is currently in progress to extend this approach to more realistic and challenging 3D 
configurations. 
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